Ziyu Xie

Research Interests

- Sensitivity Analysis, Mathematics representation of Model Discrepancy, and Inverse Uncertainty Quantification
- Scientific Machine Learning and its application to Nuclear Engineering and Inverse Uncertainty Quantification

Education

North Carolina State University
Ph.D. Student, Department of Nuclear Engineering
Cumulative GPA – 3.528/4.0
Shandong University
B.S., Physics Major in Taishan College
Cumulative GPA – 89.21/100
Duke University

Visiting undergraduate student, Physcis Department • Cumulative GPA – **3.96/4.0**

Research and Work Experience

Graduate Research & Teaching Assistant

Department of Nuclear Engineering

- Perform inverse Uncertainty Quantification (UQ) using adaptive Markov Chain Monte Carlo sampling method on thermal hydraulic simulation models.
- Apply functional Principal Components Analysis for the Bayesian calibration of TRACE time dependent model.
- Develop mathematical representation of model discrepancy based on machine learning methods for inverse UQ.
- TA: NE765 (Verification and Validation), Fall 2022; NE795 (Scientific Machine Learning), Fall 2023.

Research Aide

Nuclear Engineering Division

- Apply a forward UQ based on different source of input uncertainties using DAKOTA for the SAM model of Fast Flux Test Facility.
- Improve the SAM model using a multi channel rod bundle component for Fast Flux Test Facility.

Undergraduate Research Assistant

Department of Physics

- Develop the simulation code of Wigner flow using entangled trajectory dynamics for a two body system.
- Compare the results with classic mechanics, figure out the impact of quantum effects.

Raleigh, NC, USA Jan 2020 – Present

Jinan, China Sep. 2015 – Jun. 2019

Durham, NC, USA *Aug.* 2017 – *May.* 2018

Jan. 2020 – Present

Argonne National Laboratory

North Carolina State University

May. 2022 – *Jul.* 2022

Shandong University

Dec. 2018 – Nov. 2019

Undergraduate Research Assistant

Duke University *Aug.* 2017 – *May.* 2018

Department of Physics

- Develop a dynamic model for an impact experiment of granular material.
- Validate the dynamic model based on the oblique impact experiment of granular material.

Skills

- Programming Python, MATLAB, R, DAKOTA
- Language English [Fluent], Chinese [Native]

Refereed Journal Publications

- Baccou, J., Glantz, T., Ghione, A., Sargentini, L., Damblin, G., Fillion, P., Sueur, R., Iooss, B., Fang, J., Liu, J., Yang, C., Zheng, Y., Ui, A., Saito, M., Mendizábal, R., Bersano, A., Skorek, T., Tiborcz, L., Hirose, Y., Takeda, T., Nakamura, H., Choi, C., Heo, J., Petruzzi, A., Zeng, K., Xie, Z., Wu, X., Eguchi, H., Pangukir, F., Breijder, P., Franssen, S., Perret, G., Clifford, I., Di Maio, F., Ahmed, I., Zio, E., Pedroni, N., Zhang, J., Freixa, J., Ciurluini, C., Giannetti, F., and Adorni, M. (2023). A systematic approach for the adequacy analysis of a set of experimental databases: application in the framework of the ATRIUM project. (OECD/NEA WGAMA ATRIUM project exercise 1, to be submitted)
- **Xie, Z.**, Yaseen, M., and Wu, X. (2023). Functional PCA and Deep Neural Networks-based Bayesian Inverse Uncertainty Quantification with Transient Experimental Data. *arXiv preprint arXiv:2307.05592* (under review)
- Liu, Y., Mui, T., **Xie, Z.**, and Hu, R. (2023). Benchmarking FFTF LOFWOS Test# 13 using SAM code: Baseline model development and uncertainty quantification. *Annals of Nuclear Energy*, 192:110010
- Xie, Z., Jiang, W., Wang, C., and Wu, X. (2022), Bayesian Inverse Uncertainty Quantification of a MOOSE-based Melt Pool Model for Additive Manufacturing Using Experimental Data. *Annals of Nuclear Energy*, 165:108782
- Wu, X., **Xie**, **Z.**, Alsafadi, F., and Kozlowski, T. (2021). A Comprehensive Survey of Inverse Uncertainty Quantification of Physical Model Parameters in Nuclear System Thermal-Hydraulics Codes. *Nuclear Engineering and Design*, 384:111460
- Xie, Z., Alsafadi, F., and Wu, X. (2021). Towards Improving the Predictive Capability of Computer Simulations by Integrating Inverse Uncertainty Quantification and Quantitative Validation with Bayesian Hypothesis Testing. *Nuclear Engineering and Design*, 383:111423

Refereed Conference Papers and Summaries

- Xie, Z. and Wu, X. (2023). Neural Networks and Functional Alignment-based Bayesian Inverse UQ using FEBA Reflood Experiment Data. In *Proceedings of the 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20)*. Washington, D.C., USA, August 20-25, 2023
- Yaseen, M., Xie, Z., and Wu, X. (2023). Uncertainty Quantification of Deep Neural Network Predictions for Time-dependent Responses with Functional PCA. In *Proceedings of the 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20)*. Washington, D.C., USA, August 20-25, 2023
- Xie, Z. and Wu, X. (2023). Bayesian Estimation of a Machine Learning-based Representation of Model Discrepancy. In *Proceedings of the 2023 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2023)*. Niagara Falls, Ontario, Canada, August 13-17, 2023
- Xie, Z. and Wu, X. (2022). Bayesian Inverse Uncertainty Quantification of TRACE Physical Model Parameters using FEBA Reflood Experiments. In *Proceedings of the International Conference on Physics*

of Reactors (PHYSOR) 2022. Pittsburgh, PA, USA, May 15–20, 2022

- Alsafadi, F., **Xie**, **Z**., and Wu, X. (2021). Quantitative Validation with Bayes Factor. In *Transactions* of *American Nuclear Society*. Washington, DC, USA, Nov. 30 Dec. 4, 2021
- Akins, A., Xie, Z., and Wu, X. (2021). Solving a System of Ordinary Differential Equations for Reactivity Insertion Accident with Artificial Neural Networks. In *Transactions of American Nuclear Society*. Washington, DC, USA, Nov. 30 - Dec. 4, 2021
- Xie, Z. and Wu, X. (2021). A Comprehensive Framework to Improve Computer Model Simulations by Integrating Inverse Uncertainty Quantification and Validation. In *Proceedings of the 2021 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering* (*M&C-2021*). Raleigh, North Carolina, October 3–7, 2021
- Xie, Z., Jiang, W., Wang, C. and Wu, X. (2021). Inverse Uncertainty Quantification of a MOOSE based Melt Pool Model for Additive Manufacturing. In *Proceedings of the 2021 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C-2021)*. Raleigh, North Carolina, October 3–7, 2021

Awards

Summer Graduate Merit Award (GMA)	2021
College of Engineering, North Carolina State University	
Outstanding Graduate Student	2019
 Shandong University 	
Outstanding Undergraduate Student Scholarship, Shandong University	2016, 2017
• Shandong University	